P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

نویسندگان

  • Rita D. Marques
  • Helle A. Praetorius
  • Jens Leipziger
چکیده

Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb (TAL). In the medullary thick ascending limb (mTAL), basolateral P2X receptors markedly (~25%) inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (<35 days) and adult (>35 days) male mice. Using microelectrodes, we determined the transepithelial voltage (Vte) and the transepithelial resistance (Rte) and thus, transepithelial NaCl absorption (equivalent short circuit current, I'sc). We find that mTALs from adult wild type (WT) mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rtevalues in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO) mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vtevalues compared to the juvenile. No difference in absolute I'sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes. These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in mouse mTAL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicle-associated Membrane Protein 3 (VAMP3) Mediates Constitutive Trafficking of the Renal Co-transporter NKCC2 in Thick Ascending Limbs

Renal cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na+/K+/2Cl- co-transporter NKCC2. Trafficking of NKCC2 to the apical surface regulates NKCC2-mediated NaCl absorption and blood pressure. The molecular mechanisms by which NKCC2 reaches the apical surface and their role in renal function and maintenance of blood pressure are poorly characterized. Here we report that NKCC...

متن کامل

Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C.

Abnormal production of superoxide (O(2)(-)) contributes to hypertension, in part because of its effects on the kidney. The thick ascending limb absorbs 20% to 30% of the filtered load of NaCl. O(2)(-) stimulates NaCl absorption by the thick ascending limb by enhancing Na(+)/K(+)/2Cl(-) cotransporter activity; however, the signaling mechanism is unknown. We hypothesized that O(2)(-) stimulates N...

متن کامل

P2X receptors trigger intracellular alkalization in isolated perfused mouse medullary thick ascending limb

AIMS Extracellular ATP is an important regulator of renal tubular transport. Recently, we found that basolateral ATP markedly inhibits Na(+) and Cl(-) absorption in mouse medullary thick ascending limb (mTAL) via a P2X receptor. The underlying mechanism that mediates this ATP-dependent transport inhibition in mTAL is, however, unclear. The renal outer medullary K(+) channel (ROMK) is sensitive ...

متن کامل

Effects of osmolality on bicarbonate absorption by medullary thick ascending limb of the rat.

UNLABELLED Previously we demonstrated that arginine vasopressin (AVP) directly inhibits bicarbonate absorption (JHCO3, pmol/min per mm) in the medullary thick ascending limb (MTAL) of the rat. To determine whether changes in osmolality also may affect bicarbonate absorption, MTAL were studied in vitro with 25 mM HCO3- solutions. Control osmolality was 290 mosmol/kg H2O. In the absence of AVP, i...

متن کامل

Angiotensin II inhibits NaCl absorption in the rat medullary thick ascending limb.

NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT(1)) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013